Properness for iterations with uncountable supports

based on joint works of Andrzej Rosłanowski and Saharon Shelah

presented by AR

Department of Mathematics University of Nebraska at Omaha

Hejnice, February 2015

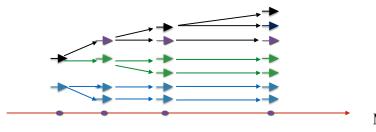
- Part I: Background
- Part II: Bounding Properties
- Part III: The Last Forcing Standing with and without diamonds

Trees of conditions

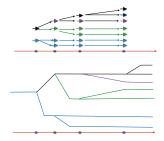
Let γ be an ordinal, $\emptyset \neq w \subseteq \gamma$. A standard $(w, 1)^{\gamma}$ -tree is a pair $\mathcal{T} = (\mathcal{T}, \mathrm{rk})$ such that

•
$$\mathbf{rk}: \mathbf{T} \longrightarrow \mathbf{W} \cup \{\gamma\},\$$

- if $t \in T$ and $rk(t) = \varepsilon$, then t is a sequence $\langle (t)_{\zeta} : \zeta \in W \cap \varepsilon \rangle$,
- (T, ⊲) is a tree with root ⟨⟩ and such that every chain in T has a ⊲–upper bound it T,
- if $t \in T$, then there is $t' \in T$ such that $t \leq t'$ and $rk(t') = \gamma$.



Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_i, \mathbb{Q}_i : i < \gamma \rangle$ be an iteration. \diamond A standard tree of conditions in $\overline{\mathbb{Q}}$ is a system $\overline{p} = \langle p_t : t \in T \rangle$ such that



(*T*, rk) is a standard (*w*, 1)^γ−tree for some *w* ⊆ *γ*,

•
$$p_t \in \mathbb{P}_{\mathrm{rk}(t)}$$
 for $t \in T$, and

• if
$$s, t \in T$$
, $s \triangleleft t$, then $p_s = p_t | \operatorname{rk}(s)$.

♦ Let \bar{p}^0, \bar{p}^1 be standard trees of conditions in $\bar{\mathbb{Q}}$, $\bar{p}^i = \langle p_t^i : t \in T \rangle$. We write $\bar{p}^0 \leq \bar{p}^1$ whenever for each $t \in T$ we have $p_t^0 \leq p_t^1$.

Theorem 1

Assume that $\overline{\mathbb{Q}} = \langle \mathbb{P}_i, \mathbb{Q}_i : i < \gamma \rangle$ is a λ -support iteration such that for all $i < \gamma$ we have

 $\Vdash_{\mathbb{P}_i}$ " \mathbb{Q}_i is strategically ($<\lambda$)–complete ".

Suppose that $\bar{p} = \langle p_t : t \in T \rangle$ is a standard tree of conditions in $\bar{\mathbb{Q}}$, $|T| < \lambda$, and $\mathcal{I} \subseteq \mathbb{P}_{\gamma}$ is open dense. Then there is a standard tree of conditions $\bar{q} = \langle q_t : t \in T \rangle$ such that $\bar{p} \leq \bar{q}$ and $(\forall t \in T)(\mathrm{rk}(t) = \gamma \Rightarrow q_t \in \mathcal{I})$.

We will the main ideas of our bounding properties by looking at their ω -relative. I do not know if the *strong bounding* introduced here is of any use, but it explains nicely what is going on in the λ -case.

Let \mathbb{P} be a forcing notion and $p \in \mathbb{P}$.

We define a game $\partial^{sb}(p, \mathbb{P})$ between two players, Generic and Antigeneric, as follows. A play of $\partial^{sb}(p, \mathbb{P})$ lasts ω steps and during the play a sequence

$$ar{x} = \left\langle m_k, \left\langle p_\ell^k, q_\ell^k : \ell < m_k
ight
angle : k < \omega
ight
angle$$

is constructed.

Suppose that the players have arrived at a stage $k < \omega$ of the game. Now,

(\aleph)_{*k*} first Generic chooses a positiv integer m_k and a sequence $\langle p_{\ell}^k : \ell < m_k \rangle$ of conditions from \mathbb{P} .

 $(\beth)_k$ Then Antigeneric answers by picking a system $\langle q_{\ell}^k : \ell < m_k \rangle$ of conditions from \mathbb{P} such that $p_{\ell}^k \le q_{\ell}^k$ (for all $\ell < m_k$).

At the end, Generic wins the play \bar{x} iff

(\circledast) there is a condition p^* stronger than p such that

$$p^* \Vdash_{\mathbb{P}} (orall k < \omega) (\exists \ell < m_k) (q^k_\ell \in \mathcal{G}_{\mathbb{P}}).$$

We say that \mathbb{P} is *strongly bounding* if for any $p \in \mathbb{P}$ Generic has a winning strategy in $\mathbb{D}^{sb}(p, \mathbb{P})$.

The Sacks forcing notion is strongly bounding while the random real forcing is not.
 (2) Every strongly bounding forcing is proper and ^ωω-bounding.

Theorem 3

Assume that $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a countable support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\xi}}$ " \mathbb{Q}_{ξ} is strongly bounding ".

Then $\mathbb{P}_{\gamma} = \lim(\bar{\mathbb{Q}})$ is proper ${}^{\omega}\omega$ -bounding and more (see the proof and later).

We will present the key construction of the proof in the form of a play of a game (without exactly describing the rules of the game). This way we will set the ground for explaining what is the meaning of the "and more". The players are called **G** and **A**. Let $\langle D_k : k < \omega \rangle$ be a list of open dense subsets of \mathbb{P}_{γ} (e.g., the list of all such sets from a model *N*) and let $p \in \mathbb{P}_{\gamma}$.

In the game/construction for $k < \omega$,

first **G** picks:
$$\mathcal{T}_k, \bar{p}^k, \langle \check{m}_{k,\xi}, \bar{p}_{k,\xi}, \bar{q}_{k,\xi} : \xi \in w_k
angle$$

then **A** answers with \bar{q}^k

and next **G** decides r_{k+1} , w_{k+1} and st_{ξ} for $\xi \in w_{k+1} \setminus w_k$

These objects are chosen so that for each $k < \omega$: Choice of **G**:

 $(*)_1 r_k \in \mathbb{P}_{\gamma}, \text{ we stipulate } r_{-1} = p \text{ and then } r_{-1} \leq r_k \leq r_{k+1}, \\ r_0(0) = p(0) \text{ and } r_k(\xi) = r_{k+1}(\xi) \text{ for } \xi \in w_k. \\ (*)_2 w_k \subseteq \gamma, |w_k| = |k+1|, \bigcup_{k < \omega} \text{Dom}(r_k) = \bigcup_{k < \omega} w_k, w_0 = \{0\}, \\ w_k \subseteq w_{k+1}$

 $(*)_3$ **st**₀ is a winning strategy of Generic in $\mathbb{D}^{\text{sbg}}(r_0(0), \mathbb{Q}_0)$ and if $\xi \in w_{k+1} \setminus w_k$, then **st**_{\xi} is a \mathbb{P}_{ξ} -name for a winning strategy of Generic in $\mathbb{D}^{\text{sbg}}(r_{k+1}(\xi), \mathbb{Q}_{\xi})$. We assume that these strategies instruct Generic to play conditions compatible with $r_{k+1}(\xi)$.

 $(*)_4 \mathcal{T}_k = (\mathcal{T}_k, \mathrm{rk}_k)$ is a finite standard $(w_k, 1)^{\gamma}$ -tree, and $\bar{p}^k = \langle p_t^k : t \in \mathcal{T}_k \rangle$ is a standard trees of conditions in $\bar{\mathbb{Q}}$.

(*)₅ If $\xi \in w_k$, then $\tilde{m}_{k,\xi}$ is a \mathbb{P}_{ξ} -name for a positive ordinal, $\bar{p}_{k,\xi}, \bar{q}_{k,\xi}$ are \mathbb{P}_{ξ} -names for $\tilde{m}_{k,\xi}$ -sequences of conditions in \mathbb{Q}_{ξ} .

(*)₆ If $\xi \in w_{\ell+1} \setminus w_{\ell}$ and $\ell < \omega$, or $\xi = 0$ and $\ell = -1$, then

 $\Vdash_{\mathbb{P}_{\xi}} `` \langle \underline{\tilde{m}}_{n,\xi}, \overline{p}_{n,\xi}, \overline{q}_{n,\xi} : \ell < n < \omega \rangle \text{ is a tail of a play of } \\ \bigcirc^{\mathrm{sbg}}(r_{\ell}(\xi), \underline{\mathbb{Q}}_{\xi}) \text{ in which Generic uses } \mathbf{st}_{\xi} ".$

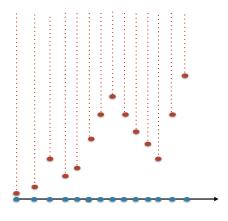
By "tail of a play" I mean that it can be completed to a full play in which Generic uses her strategy \mathbf{st}_{ξ} and an the initial stages Antigeneric just repeats her entries.

Choice of **A**:

$$(*)_{10} \ \bar{q}^k = \langle q_t^k : t \in T_k \rangle$$
 is a standard tree of conditions in $\overline{\mathbb{Q}}$,
 $\bar{p}^k \leq \bar{q}^k$, and $q_t^k \in D_k$ for all $t \in T_k$ of rank γ .
 $(*)_{11} \ q_t^k \Vdash_{\mathbb{P}_{\xi}} \text{``} \ \bar{g}_{k,\xi}(i) = q_{t \frown \langle i \rangle}^k(\xi)$ for $i < m_{k,\xi}^t$ ``for all $t \in T_k$.

Choice of **G**: $(*)_{12} \operatorname{Dom}(r_k) = \bigcup_{t \in T_k} \operatorname{Dom}(q_t^k) \cup \operatorname{Dom}(p) \text{ and if } t \in T_k,$ $\xi \in \operatorname{Dom}(r_k) \cap \operatorname{rk}_k(t) \setminus w_k, \text{ and } q_t^k \upharpoonright \xi \leq q \in \mathbb{P}_{\xi}, r_k \upharpoonright \xi \leq q, \text{ then}$

$$q \Vdash_{\mathbb{P}_{\xi}}$$
 "if the set $\{r_{\ell}(\xi) : \ell < k\} \cup \{q_{t}^{k}(\xi), p(\xi)\}$
has an upper bound in \mathbb{Q}_{ξ} ,
then $r_{k}(\xi)$ is such an upper bound ".



After the game/construction is over, define a condition $r \in \mathbb{P}_{\gamma}$ as follows. Let $\text{Dom}(r) = \bigcup_{k < \omega} \text{Dom}(r_k)$ and for $\xi \in \text{Dom}(r)$ let $r(\xi)$ be a \mathbb{P}_{ξ} -name for a condition in \mathbb{Q}_{ξ} such that if $\xi \in w_{\ell+1} \setminus w_{\ell}$, $\tilde{\ell} < \omega$ (or $\xi = 0$ and $\ell = -1$), then

$$\overset{}\Vdash_{\mathbb{P}_{\xi}} \quad \text{``} r(\xi) \geq r_{\ell}(\xi) \text{ and} \\ r(\xi) \Vdash_{\mathbb{Q}_{\xi}} (\forall k \in (\ell, \omega)) (\exists i < \tilde{m}_{k,\xi}) (\bar{q}_{k,\xi}(i) \in \mathcal{G}_{\mathbb{Q}_{\xi}}) \text{ ''}.$$

Then $r \ge p$ and for each $k < \omega$ the family $\{q_t^k : t \in T_k \& \operatorname{rk}_k(t) = \gamma\}$ is pre-dense above *r*.

- We cannot say that P_γ is strongly bounding as the game changes. We play with *trees of conditions*! (I.e., Antigeneric has to answer with such).
- We may argue for a game in which "maximal braches of the tree T_k" and corresponding conditions p^k_t are played successively forcing Antigeneric to build something close to a tree of conditions.
- If we want a *preservation theorem* then we need to modify the game mentioned above even further allowing several "runs" of the successive choices above.

The real stuff: the As

In this part we assume the following:

- (a) λ is a strongly inaccessible cardinal,
- (b) $\bar{\mu} = \langle \mu_{\alpha} : \alpha < \lambda \rangle$, each μ_{α} is a regular cardinal satisfying (for $\alpha < \lambda$)

$$\aleph_{\mathbf{0}} \leq \mu_{\alpha} \leq \lambda \qquad \text{and} \qquad \left(\forall f \in {}^{\alpha}\mu_{\alpha}\right) \left(\big|\prod_{\xi < \alpha} f(\xi)\big| < \mu_{\alpha}\right),$$

- (c) $\varphi : \lambda \longrightarrow \lambda$ is a strictly increasing function such that $\aleph_0 + \alpha < \varphi(\alpha)$ is regular,
- (d) $\overline{F} = \langle F_t : t \in \bigcup_{\alpha < \lambda} \prod_{\beta < \alpha} \varphi(\beta) \rangle$ where F_t is a $\langle \varphi(\alpha)$ -complete filter on $\varphi(\alpha)$ whenever $t \in \prod_{\beta < \alpha} \varphi(\beta), \alpha < \lambda$.

(e) $\bar{E} = \langle E_t : t \in {}^{<\lambda}\lambda \rangle$ is a system of (< λ)–complete filters on λ .

(f) *E* is a normal filter on λ .

Game A

Let $p \in \mathbb{Q}$. We define a game $\Im_{\mu}^{rcA}(p, \mathbb{Q})$ between two players, Generic and Antigeneric, as follows. A play of $\Im_{\mu}^{rcA}(p, \mathbb{Q})$ lasts λ steps and during a play a sequence

$$\left\langle \textit{I}_{\alpha}, \left\langle \textit{p}_{t}^{\alpha}, \textit{q}_{t}^{\alpha} : t \in \textit{I}_{\alpha} \right\rangle : \alpha < \lambda \right\rangle$$

is constructed. At stage $\alpha < \lambda$ of the game:

(ℵ)_α first Generic chooses a non-empty set *I*_α of cardinality < μ_α and a system ⟨*p*^α_t : *t* ∈ *I*_α⟩ of conditions from Q,
(□)_α then Antigeneric answers by picking a system ⟨*q*^α_t : *t* ∈ *I*_α⟩ of conditions from Q such that (∀*t* ∈ *I*_α)(*p*^α_t ≤ *q*^α_t). At the end, Generic wins the play

$$\left\langle \textit{I}_{\alpha}, \left\langle \textit{p}_{t}^{\alpha}, \textit{q}_{t}^{\alpha} : t \in \textit{I}_{\alpha} \right\rangle : \alpha < \lambda \right\rangle$$

of $\partial_{\bar{\mu}}^{rcA}(p,\mathbb{Q})$ if and only if (*)^{rc}_A there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that $p^* \Vdash_{\mathbb{Q}} (\forall \alpha < \lambda) (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \mathcal{G}_{\mathbb{Q}}).$

Game a

Let $p \in \mathbb{Q}$. A game $\partial_{\mu}^{\text{rca}}(p, \mathbb{Q})$ between Generic and Antigeneric is defined as follows. A play of $\partial_{\mu}^{\text{rca}}(p, \mathbb{Q})$ lasts λ steps and during a play a sequence

$$\left\langle \zeta_{\alpha}, \left\langle \boldsymbol{p}_{\xi}^{\alpha}, \boldsymbol{q}_{\xi}^{\alpha} : \xi < \zeta_{\alpha} \right\rangle : \alpha < \lambda \right\rangle$$

is constructed. At stage $\alpha < \lambda$ of the game:

* Generic chooses a non-zero ordinal $\zeta_{\alpha} < \mu_{\alpha}$ and then * the two players play a subgame of length ζ_{α} alternately choosing successive terms of a sequence $\langle p_{\xi}^{\alpha}, q_{\xi}^{\alpha} : \xi < \zeta_{\alpha} \rangle$. At a stage $\xi < \zeta_{\alpha}$ of the subgame, first Generic picks a condition $p_{\xi}^{\alpha} \in \mathbb{Q}$ and then Antigeneric answers with a condition q_{ξ}^{α} stronger than p_{ξ}^{α} .

At the end, Generic wins the play $\left\langle \zeta_{\alpha}, \langle p_{\xi}^{\alpha}, q_{\xi}^{\alpha} : \xi < \zeta_{\alpha} \right\rangle : \alpha < \lambda \right\rangle$ of $\Im_{\overline{\mu}}^{rca}(p, \mathbb{Q})$ if and only if

 $(\circledast)^{rc}_{a}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $\boldsymbol{\rho}^* \Vdash_{\mathbb{Q}} (\forall lpha < \lambda) (\exists \xi < \zeta_{lpha}) (\boldsymbol{q}_{\xi}^{lpha} \in \boldsymbol{\mathcal{G}}_{\mathbb{Q}}).$ Nebia

Definition 4

We say that a forcing notion ${\mathbb Q}$ is reasonably A–bounding over $\bar{\mu}$ if

- (a) \mathbb{Q} is strategically (< λ)–complete, and
- (b) for any $p \in \mathbb{Q}$, Generic has a winning strategy in the game $\partial_{\overline{\mu}}^{rcA}(p, \mathbb{Q})$.

In an analogous manner we define when the forcing notion \mathbb{Q} is reasonably **a**-bounding over $\overline{\mu}$.

If $\mu_{\alpha} = \lambda$ for each $\alpha < \lambda$, then we may omit $\overline{\mu}$ and say reasonably *A*-bounding etc.

Theorem 5 (Cf [RoSh 860, Thm 3.2], [RoSh 890, Thm 3.13])

Assume that $\lambda, \bar{\mu}$ are as declared before and $\bar{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a λ -support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\xi}} "\mathbb{Q}_{\xi} \text{ is reasonably A-bounding over } \bar{\mu} ".$

Then $\mathbb{P}_{\gamma} = \lim(\bar{\mathbb{Q}})$ is reasonably **a**-bounding over $\bar{\mu}$ (and actually more).

Observation 6

If \mathbb{Q} is is reasonably **a**—bounding, then it is λ —proper and ${}^{\lambda}\lambda$ —bounding.

Theorem 5 (Cf [RoSh 860, Thm 3.2], [RoSh 890, Thm 3.13])

Assume that $\lambda, \bar{\mu}$ are as declared before and $\bar{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a λ -support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\xi}} "\mathbb{Q}_{\xi} \text{ is reasonably A-bounding over } \bar{\mu} ".$

Then $\mathbb{P}_{\gamma} = \lim(\overline{\mathbb{Q}})$ is reasonably **a**-bounding over $\overline{\mu}$ (and actually more).

Observation 6

If \mathbb{Q} is is reasonably **a**-bounding, then it is λ -proper and $^{\lambda}\lambda$ -bounding.

Remark 7

- The forcing notion Q²_{φ,F} is reasonably A–bounding. (Note: since λ is strongly inaccessible the forcing notions Q²_{φ,F} and Q³_{φ,F} are equivalent.)
- The forcing P* (Goldstern–Shelah type) is reasonably
 a–bounding but it is very not A–bounding! The iterations as in Theorem 5 preserve some sort of ultrafilters on λ while P* destroys them, see [RoSh 890].
- We have also nicely double a-bounding forcing and this property is preserved in λ-support iterations. It is "almost" weaker then being reasonably a-bounding (well, we need to add a demand that the conditions played by Generic in the subgames are pairwise incompatible).

Better stuff: the Bs

The A-like bounding properties do not cover forcing notions of the type $\mathbb{Q}^{\ell,\bar{E}}$ or $\mathbb{Q}_{E}^{1,\bar{E}}$ (as those add unbounded λ -reals). We will cover $\mathbb{Q}^{\ell,\bar{E}}$ in the third part, at the moment let us look at bounding properties weak enough to cover $\mathbb{Q}_{E}^{1,\bar{E}}$. We will weaken the winning conditions in the game $\partial_{\bar{\mu}}^{\mathrm{rcA}}(p,\mathbb{Q})$ —instead of

 $(\circledast)^{\rm rc}_{\rm A} \text{ there is a condition } p^* \in \mathbb{Q} \text{ stronger than } p \text{ and such that}$ $p^* \Vdash_{\mathbb{Q}} (\forall \alpha < \lambda) (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \mathcal{G}_{\mathbb{Q}})$

we will demand something like

 $(\circledast)^{\mathrm{rc}}_{\mathrm{X}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} ig\{ lpha < \lambda : ig(\exists t \in I_lpha ig) ig(q^lpha_t \in \mathcal{G}_{\mathbb{Q}} ig) ig\} \in \mathsf{Some} \mathsf{ Filter}.$

What are the choices for the filter?

Better stuff: the Bs

The A-like bounding properties do not cover forcing notions of the type $\mathbb{Q}^{\ell,\bar{E}}$ or $\mathbb{Q}_{E}^{1,\bar{E}}$ (as those add unbounded λ -reals). We will cover $\mathbb{Q}^{\ell,\bar{E}}$ in the third part, at the moment let us look at bounding properties weak enough to cover $\mathbb{Q}_{E}^{1,\bar{E}}$. We will weaken the winning conditions in the game $\partial_{\bar{\mu}}^{\text{rcA}}(p,\mathbb{Q})$ — instead of

(*)^{*r*}_A there is a condition $p^* \in \mathbb{Q}$ stronger than *p* and such that $p^* \Vdash_{\mathbb{Q}} (\forall \alpha < \lambda) (\exists t \in I_{\alpha}) (q_t^{\alpha} \in G_{\mathbb{Q}})$

we will demand something like

 $(\circledast)_X^{\rm rc}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} \{ \alpha < \lambda : (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \mathcal{G}_{\mathbb{Q}}) \} \in$ Some Filter.

What are the choices for the filter?

Better stuff: the Bs

The A-like bounding properties do not cover forcing notions of the type $\mathbb{Q}^{\ell,\bar{E}}$ or $\mathbb{Q}_{E}^{1,\bar{E}}$ (as those add unbounded λ -reals). We will cover $\mathbb{Q}^{\ell,\bar{E}}$ in the third part, at the moment let us look at bounding properties weak enough to cover $\mathbb{Q}_{E}^{1,\bar{E}}$. We will weaken the winning conditions in the game $\partial_{\bar{\mu}}^{\mathrm{rcA}}(p,\mathbb{Q})$ —instead of

 $(\circledast)^{\rm rc}_{\rm A}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

$$\boldsymbol{p}^* \Vdash_{\mathbb{Q}} \big(\forall \alpha < \lambda \big) \big(\exists t \in \boldsymbol{I}_{\alpha} \big) \big(\boldsymbol{q}_t^{\alpha} \in \boldsymbol{\mathcal{G}}_{\mathbb{Q}} \big)$$

we will demand something like

 $(\circledast)^{\mathrm{rc}}_{\mathrm{X}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} \{ \alpha < \lambda : (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \mathcal{G}_{\mathbb{Q}}) \} \in$ Some Filter.

What are the choices for the filter?

If a forcing notion \mathbb{Q} is strategically $(\langle \lambda \rangle)$ -complete and D is a normal filter on λ , then the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ is proper.

Abusing notation, we may denote the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ also by D or by $D^{\mathbb{Q}}$. Thus

if \underline{A} is a \mathbb{Q} -name for a subset of λ , then $p \Vdash_{\mathbb{Q}} \underline{A} \in D^{\mathbb{Q}}$ if and only if for some \mathbb{Q} -names \underline{A}_{α} for elements of $D^{\mathbf{V}}$ we have that $p \Vdash_{\mathbb{Q}} \Delta A_{\alpha} \subseteq A$ (where Δ denotes the operation of diagonal

 $\alpha < \lambda$ intersection).

From now on, in addition to previous assumptions, we suppose

(g) D is a normal filter on λ .

(Intention: *D* is "orthogonal" to *E*.)

If a forcing notion \mathbb{Q} is strategically $(<\lambda)$ -complete and D is a normal filter on λ , then the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ is proper.

Abusing notation, we may denote the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ also by D or by $D^{\mathbb{Q}}$. Thus

if \underline{A} is a \mathbb{Q} -name for a subset of λ , then $p \Vdash_{\mathbb{Q}} \underline{A} \in D^{\mathbb{Q}}$ if and only if for some \mathbb{Q} -names \underline{A}_{α} for elements of $D^{\mathbf{V}}$ we have that $p \Vdash_{\mathbb{Q}} \triangle \underline{A}_{\alpha} \subseteq \underline{A}$ (where \triangle denotes the operation of diagonal intersection).

From now on, in addition to previous assumptions, we suppose

(g) D is a normal filter on λ .

(Intention: *D* is "orthogonal" to *E*.)

If a forcing notion \mathbb{Q} is strategically $(<\lambda)$ -complete and D is a normal filter on λ , then the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ is proper.

Abusing notation, we may denote the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ also by D or by $D^{\mathbb{Q}}$. Thus if A is a \mathbb{Q} -name for a subset of λ , then $p \Vdash_{\mathbb{Q}} A \in D^{\mathbb{Q}}$ if and only if for some \mathbb{Q} -names A_{α} for elements of $D^{\mathbf{V}}$ we have that $p \Vdash_{\mathbb{Q}} \begin{subarray}{c} \Delta & A_{\alpha} \subseteq A \\ \alpha < \lambda \end{subarray}$ (where Δ denotes the operation of diagonal intersection).

From now on, in addition to previous assumptions, we suppose

(g) D is a normal filter on λ .

```
(Intention: D is "orthogonal" to E.)
```


Observation 8

If a forcing notion \mathbb{Q} is strategically $(<\lambda)$ -complete and D is a normal filter on λ , then the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ is proper.

Abusing notation, we may denote the normal filter generated by D in $\mathbf{V}^{\mathbb{Q}}$ also by D or by $D^{\mathbb{Q}}$. Thus if A is a \mathbb{Q} -name for a subset of λ , then $p \Vdash_{\mathbb{Q}} A \in D^{\mathbb{Q}}$ if and only

If \underline{A} is a \mathbb{Q} -name for a subset of λ , then $p \Vdash_{\mathbb{Q}} \underline{A} \in D^{\mathbb{Q}}$ if and only if for some \mathbb{Q} -names \underline{A}_{α} for elements of $D^{\mathbb{V}}$ we have that $p \Vdash_{\mathbb{Q}} \triangle_{\alpha < \lambda} \underline{A}_{\alpha} \subseteq \underline{A}$ (where \triangle denotes the operation of diagonal intersection).

From now on, in addition to previous assumptions, we suppose

(g) D is a normal filter on λ .

(Intention: *D* is "orthogonal" to *E*.)

Games $\supset_{D,\bar{\mu}}^{\operatorname{rcB}}(p,\mathbb{Q}), \supset_{D,\bar{\mu}}^{\operatorname{rcb}}(p,\mathbb{Q})$ are defined similarly to $\supset_{\bar{\mu}}^{\operatorname{rcA}}(p,\mathbb{Q}), \supset_{\bar{\mu}}^{\operatorname{rca}}(p,\mathbb{Q})$, except that the winning criterions are now

 $(\circledast)^{\mathrm{rc}}_{\mathrm{B}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

$${oldsymbol p}^* \Vdash_{\mathbb Q}$$
 " $ig\{ lpha < \lambda : ig(\exists t \in {oldsymbol I}_lpha ig) ig({oldsymbol q}^lpha_t \in {oldsymbol G}_\mathbb Q ig) ig\} \in {oldsymbol D}^\mathbb Q$ ",

and

 $(\circledast)_{\mathbf{b}}^{\mathrm{rc}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

$$\mathbf{D}^* \Vdash_{\mathbb{Q}} `` \left\{ lpha < \lambda : \left(\exists \xi < \zeta_lpha
ight) \left(\mathbf{q}^lpha_\xi \in \mathbf{G}_\mathbb{Q}
ight)
ight\} \in \mathbf{D}^\mathbb{Q}$$
 ",

respectively.

1

A strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *reasonably B*-bounding (-bounding, respectively) over $D, \bar{\mu}$ if for any $p \in \mathbb{Q}$, Generic has a winning strategy in the game $\partial_{D,\bar{\mu}}^{rcB}(p,\mathbb{Q})$ $(\partial_{D,\bar{\mu}}^{rcb}(p,\mathbb{Q}), \text{ respectively}).$

Theorem 10 ([RoSh 860, Thm 3.1])

Assume that $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a λ -support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\mathcal{E}}}$ " \mathbb{Q}_{ξ} is reasonably B-bounding over $D, \bar{\mu}$ ".

Then $\mathbb{P}_{\gamma} = \lim(\overline{\mathbb{Q}})$ is reasonably **b**-bounding over $D, \overline{\mu}$ (and so also λ -proper).

Unfortunately, while there are examples of forcings which are B– but not **a**–bounding, this does not help us with $\mathbb{Q}_{E}^{1,\overline{E}}$.

A strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *reasonably B*-bounding (-bounding, respectively) over $D, \bar{\mu}$ if for any $p \in \mathbb{Q}$, Generic has a winning strategy in the game $\partial_{D,\bar{\mu}}^{rcB}(p,\mathbb{Q})$ $(\partial_{D,\bar{\mu}}^{rcb}(p,\mathbb{Q}), \text{ respectively}).$

Theorem 10 ([RoSh 860, Thm 3.1])

Assume that $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a λ -support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\xi}}$ " \mathbb{Q}_{ξ} is reasonably B-bounding over D, $\bar{\mu}$ ".

Then $\mathbb{P}_{\gamma} = \lim(\overline{\mathbb{Q}})$ is reasonably **b**-bounding over $D, \overline{\mu}$ (and so also λ -proper).

Unfortunately, while there are examples of forcings which are B– but not **a**–bounding, this does not help us with $\mathbb{Q}_{E}^{1,\overline{E}}$.

A strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *reasonably B*-bounding (-bounding, respectively) over $D, \bar{\mu}$ if for any $p \in \mathbb{Q}$, Generic has a winning strategy in the game $\partial_{D,\bar{\mu}}^{rcB}(p,\mathbb{Q})$ $(\partial_{D,\bar{\mu}}^{rcb}(p,\mathbb{Q}), \text{ respectively}).$

Theorem 10 ([RoSh 860, Thm 3.1])

Assume that $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ is a λ -support iteration such that for every $\xi < \gamma$,

 $\Vdash_{\mathbb{P}_{\xi}}$ " \mathbb{Q}_{ξ} is reasonably B-bounding over $D, \bar{\mu}$ ".

Then $\mathbb{P}_{\gamma} = \lim(\overline{\mathbb{Q}})$ is reasonably **b**-bounding over $D, \overline{\mu}$ (and so also λ -proper).

Unfortunately, while there are examples of forcings which are B– but not **a**–bounding, this does not help us with $\mathbb{Q}_{E}^{1,\bar{E}}$.

A $\mathcal{D}\ell$ -parameter on λ is a triple $\mathbf{p} = (\bar{P}, S, D) = (\bar{P}^{\mathbf{p}}, S^{\mathbf{p}}, D^{\mathbf{p}})$ such that

- *D* is a proper uniform normal filter on λ , $S \in D$,
- $\bar{P} = \langle P_{\delta} : \delta \in S \rangle$ and $P_{\delta} \in [{}^{\delta}\delta]^{<\lambda}$ for each $\delta \in S$,
- for every function $f \in {}^{\lambda}\lambda$ we have

$$\operatorname{set}^{\mathbf{p}}(f) \stackrel{\mathrm{def}}{=} \{ \delta \in \boldsymbol{S} : f | \delta \in \boldsymbol{P}_{\delta} \} \in \boldsymbol{D}.$$

Remember that our λ is strongly inaccessible. Let D is the filter generated by club subsets of λ and $P_{\delta} = {}^{\delta}\delta$, $\overline{P} = \langle P_{\delta} : \delta < \lambda \rangle$. Then $(\overline{P}, \lambda, D)$ is a $\mathcal{D}\ell$ -parameter on λ .

A $\mathcal{D}\ell$ -parameter on λ is a triple $\mathbf{p} = (\bar{P}, S, D) = (\bar{P}^{\mathbf{p}}, S^{\mathbf{p}}, D^{\mathbf{p}})$ such that

- *D* is a proper uniform normal filter on λ , $S \in D$,
- $\bar{P} = \langle P_{\delta} : \delta \in S \rangle$ and $P_{\delta} \in [{}^{\delta}\delta]^{<\lambda}$ for each $\delta \in S$,
- for every function $f \in {}^{\lambda}\lambda$ we have

$$\operatorname{set}^{\mathbf{p}}(f) \stackrel{\mathrm{def}}{=} \{ \delta \in \boldsymbol{S} : f | \delta \in \boldsymbol{P}_{\delta} \} \in \boldsymbol{D}.$$

Remember that our λ is strongly inaccessible. Let *D* is the filter generated by club subsets of λ and $P_{\delta} = {}^{\delta}\delta$, $\bar{P} = \langle P_{\delta} : \delta < \lambda \rangle$. Then (\bar{P}, λ, D) is a $D\ell$ -parameter on λ .

Let **p** be a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} be a a strategically (< λ)-complete forcing notion. In **V**^{\mathbb{Q}} we define

- D^p[Q] = D^{p[Q]} is the normal filter generated by D^p ∪ {set^p(f) : f ∈ ^λλ}, and
- $\mathbf{p}[\mathbb{Q}] = (\bar{P}^{\mathbf{p}}, S^{\mathbf{p}}, D^{\mathbf{p}[\mathbb{Q}]}).$

The filter $D^{\mathbf{p}}[\mathbb{Q}]$ is (potentially) larger than $D^{\mathbb{Q}}$ (the normal filter generated by D), but it is still a proper filter:

_emma 13

Assume that $\mathbf{p} = (\overline{P}, S, D)$ is a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} is a strategically ($<\lambda$)-complete forcing notion. Then $\Vdash_{\mathbb{Q}} \emptyset \notin D^{\mathbf{p}}[\mathbb{Q}]$. Consequently, $\Vdash_{\mathbb{Q}}$ " $\mathbf{p}[\mathbb{Q}]$ is a $\mathcal{D}\ell$ -parameter on λ ".

Let **p** be a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} be a a strategically (< λ)-complete forcing notion. In **V**^{\mathbb{Q}} we define

- $D^{\mathbf{p}}[\mathbb{Q}] = D^{\mathbf{p}}[\mathbb{Q}]$ is the normal filter generated by $D^{\mathbf{p}} \cup \{\text{set}^{\mathbf{p}}(f) : f \in {}^{\lambda}\lambda\}$, and
- $\mathbf{p}[\mathbb{Q}] = (\bar{P}^{\mathbf{p}}, S^{\mathbf{p}}, D^{\mathbf{p}[\mathbb{Q}]}).$

The filter $D^{\mathbf{p}}[\mathbb{Q}]$ is (potentially) larger than $D^{\mathbb{Q}}$ (the normal filter generated by *D*), but it is still a proper filter:

_emma 13

Assume that $\mathbf{p} = (\overline{P}, S, D)$ is a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} is a strategically ($<\lambda$)-complete forcing notion. Then $\Vdash_{\mathbb{Q}} \emptyset \notin D^{p}[\mathbb{Q}]$. Consequently, $\Vdash_{\mathbb{Q}}$ " $\mathbf{p}[\mathbb{Q}]$ is a $\mathcal{D}\ell$ -parameter on λ ".

Let **p** be a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} be a a strategically (< λ)-complete forcing notion. In **V**^{\mathbb{Q}} we define

- $D^{\mathbf{p}}[\mathbb{Q}] = D^{\mathbf{p}}[\mathbb{Q}]$ is the normal filter generated by $D^{\mathbf{p}} \cup \{\text{set}^{\mathbf{p}}(f) : f \in {}^{\lambda}\lambda\}$, and
- $\mathbf{p}[\mathbb{Q}] = (\bar{P}^{\mathbf{p}}, S^{\mathbf{p}}, D^{\mathbf{p}[\mathbb{Q}]}).$

The filter $D^{\mathbf{p}}[\mathbb{Q}]$ is (potentially) larger than $D^{\mathbb{Q}}$ (the normal filter generated by *D*), but it is still a proper filter:

Lemma 13

Assume that $\mathbf{p} = (\bar{P}, S, D)$ is a $\mathcal{D}\ell$ -parameter on λ and \mathbb{Q} is a strategically (< λ)-complete forcing notion. Then $\Vdash_{\mathbb{Q}} \emptyset \notin D^{\mathbf{p}}[\mathbb{Q}]$. Consequently, $\Vdash_{\mathbb{Q}} "\mathbf{p}[\mathbb{Q}]$ is a $\mathcal{D}\ell$ -parameter on λ ".

- $(\aleph)_{\alpha} \text{ first Generic chooses a set } I_{\alpha} \text{ of cardinality} < \lambda \text{ and a} \\ \text{ system } \langle p_t^{\alpha} : t \in I_{\alpha} \rangle \text{ of conditions from } \mathbb{Q},$
- $(\beth)_{\alpha}$ then Antigeneric answers by picking a system $\langle q_t^{\alpha} : t \in I_{\alpha} \rangle$ of conditions from \mathbb{Q} such that $(\forall t \in I_{\alpha})(p_t^{\alpha} \le q_t^{\alpha})$.

At the end, Generic wins the play $\langle I_{\alpha}, \langle p_{t}^{\alpha}, q_{t}^{\alpha} : t \in I_{\alpha} \rangle : \alpha < \lambda \rangle$ of $\Im_{\mathbf{p}}^{\mathrm{rbB}}(\boldsymbol{p}, \mathbb{Q})$ if and only if

 $(\circledast)_{rbB}^{p}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} `` \{ \alpha < \lambda : (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \Gamma_{\mathbb{Q}}) \} \in D[\mathbb{Q}] ``.$

 $(\aleph)_{\alpha} \text{ first Generic chooses a set } I_{\alpha} \text{ of cardinality} < \lambda \text{ and a} \\ \text{ system } \langle p_t^{\alpha} : t \in I_{\alpha} \rangle \text{ of conditions from } \mathbb{Q},$

 $(\beth)_{\alpha}$ then Antigeneric answers by picking a system $\langle q_t^{\alpha} : t \in I_{\alpha} \rangle$ of conditions from \mathbb{Q} such that $(\forall t \in I_{\alpha})(p_t^{\alpha} \le q_t^{\alpha})$.

At the end, Generic wins the play $\langle I_{\alpha}, \langle p_{t}^{\alpha}, q_{t}^{\alpha} : t \in I_{\alpha} \rangle : \alpha < \lambda \rangle$ of $\exists_{\mathbf{p}}^{\mathrm{rbB}}(\boldsymbol{p}, \mathbb{Q})$ if and only if

 $(\circledast)_{\text{rbB}}^{p}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} `` \{ \alpha < \lambda : (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \Gamma_{\mathbb{Q}}) \} \in D[\mathbb{Q}] ".$

- $$\begin{split} (\aleph)_{\alpha} \ \ \text{first Generic chooses a set } I_{\alpha} \ \text{of cardinality} < \lambda \ \text{and a} \\ \text{system } \langle p_t^{\alpha} : t \in I_{\alpha} \rangle \ \text{of conditions from } \mathbb{Q}, \end{split}$$
- $(\beth)_{\alpha}$ then Antigeneric answers by picking a system $\langle q_t^{\alpha} : t \in I_{\alpha} \rangle$ of conditions from \mathbb{Q} such that $(\forall t \in I_{\alpha})(p_t^{\alpha} \le q_t^{\alpha})$.

At the end, Generic wins the play $\langle I_{\alpha}, \langle p_{t}^{\alpha}, q_{t}^{\alpha} : t \in I_{\alpha} \rangle : \alpha < \lambda \rangle$ of $\Im_{\mathbf{p}}^{\text{rbB}}(p, \mathbb{Q})$ if and only if

 $(\circledast)_{\text{rbB}}^{\mathbf{p}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

 $p^* \Vdash_{\mathbb{Q}} `` \{ \alpha < \lambda : (\exists t \in I_{\alpha}) (q_t^{\alpha} \in \Gamma_{\mathbb{Q}}) \} \in D[\mathbb{Q}] ``.$

- $\begin{aligned} (\aleph)_{\alpha} \ \ \text{first Generic chooses a set } I_{\alpha} \ \text{of cardinality} < \lambda \ \text{and a} \\ \text{system } \langle p_t^{\alpha} : t \in I_{\alpha} \rangle \ \text{of conditions from } \mathbb{Q}, \end{aligned}$
- $(\beth)_{\alpha}$ then Antigeneric answers by picking a system $\langle q_t^{\alpha} : t \in I_{\alpha} \rangle$ of conditions from \mathbb{Q} such that $(\forall t \in I_{\alpha})(p_t^{\alpha} \le q_t^{\alpha})$.

At the end, Generic wins the play $\langle I_{\alpha}, \langle p_{t}^{\alpha}, q_{t}^{\alpha} : t \in I_{\alpha} \rangle : \alpha < \lambda \rangle$ of $\Im_{\mathbf{p}}^{\text{rbB}}(\boldsymbol{p}, \mathbb{Q})$ if and only if

 $(\circledast)_{\text{rbB}}^{\mathbf{p}}$ there is a condition $p^* \in \mathbb{Q}$ stronger than p and such that

$$\boldsymbol{\rho}^* \Vdash_{\mathbb{Q}} `` \left\{ \alpha < \lambda : \left(\exists t \in \mathbf{I}_{\alpha} \right) \left(\boldsymbol{q}_t^{\alpha} \in \mathsf{\Gamma}_{\mathbb{Q}} \right) \right\} \in \boldsymbol{D}[\mathbb{Q}] ".$$

Let \mathbb{Q} be a strategically $(\langle \lambda \rangle)$ -complete forcing notion. We say that \mathbb{Q} is *reasonably B-bounding over* **p** if for any $p \in \mathbb{Q}$, Generic has a winning strategy in the game $\Im_{\mathbf{p}}^{\text{rbB}}(p, \mathbb{Q})$.

Theorem 15 ([RoSh 888, Thm 1.10])

Assume that λ is a strongly inaccessible cardinal and **p** is a $\mathcal{D}\ell$ -parameter on λ . Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \gamma \rangle$ be a λ -support iteration such that for every $\alpha < \lambda$, $\Vdash_{\mathbb{P}_{\alpha}} "\mathbb{Q}_{\alpha}$ is reasonably B-bounding over $\mathbf{p}[\mathbb{P}_{\alpha}]$ ".

Then

(a) $\mathbb{P}_{\gamma} = \lim(\bar{\mathbb{Q}})$ is λ -proper,

(b) if *τ* is a P_γ-name for a function from λ to V, p ∈ P_γ, then there are q ≥ p and ⟨A_ξ : ξ < λ⟩ such that (∀ξ < λ)(|A_ξ| < λ) and

 $q \Vdash$ " $\{\xi < \lambda : \underline{\tau}(\xi) \in A_{\xi}\} \in D^{p}[\mathbb{P}_{\gamma}]$ ".

Proposition 16 ([RoSh 888, Prop. 1.12])

Let **p** = (P̄, S, D) be a Dℓ-parameter on λ such that λ \ S ∈ E.
Q_E^{1,Ē} is reasonably B-bounding over **p**.
If (λ is strongly inaccessible and) (∀δ ∈ S)(|P_δ| ≤ |δ|), then |⊢_{Q_E^{1,Ē}} D^{Q_E^{1,Ē}} ≠ D[Q_E^{1,Ē}].

Many different $\mathbb{Q}_E^{1,E}$'s — oh my lords (of iteration)!

Definition 17

- A forcing notion with λ -complete (κ, μ) -purity is a triple $(\mathbb{Q}, \leq, \leq_{\mathrm{pr}})$ such that \leq, \leq_{pr} are transitive reflexive (binary) relations on \mathbb{Q} such that
 - (a) $\leq_{\mathrm{pr}} \subseteq \leq$,
 - (b) both (\mathbb{Q},\leq) and (\mathbb{Q},\leq_{pr}) are strategically $(<\lambda)$ –complete,
 - (c) for every $p \in \mathbb{Q}$ and a (\mathbb{Q}, \leq) -name $\underline{\tau}$ for an ordinal below κ , there are a set A of size less than μ and a condition $q \in \mathbb{Q}$ such that $p \leq_{\text{pr}} q$ and q forces (in (\mathbb{Q}, \leq)) that " $\underline{\tau} \in A$ ".
- 2 If $(\mathbb{Q}, \leq, \leq_{\mathrm{pr}})$ is a forcing notion with λ -complete (κ, μ) -purity for every κ , then we say that it has λ -complete $(*, \mu)$ -purity.

Let $\mathbb{Q} = (\mathbb{Q}, \leq, \leq_{\mathrm{pr}})$ be a forcing notion with λ -complete $(*, \lambda^+)$ -purity, $\mathbf{p} = (\bar{P}, S, D)$ be a $\mathcal{D}\ell$ -parameter on λ, \mathcal{U} be a normal filter on λ and $\bar{\mu} = \langle \mu_{\alpha} : \alpha < \lambda \rangle$ be a sequence of cardinals below λ .

Many different $\mathbb{Q}_E^{1,E}$'s — oh my lords (of iteration)!

Definition 17

- A forcing notion with λ -complete (κ, μ) -purity is a triple $(\mathbb{Q}, \leq, \leq_{\mathrm{pr}})$ such that \leq, \leq_{pr} are transitive reflexive (binary) relations on \mathbb{Q} such that
 - (a) $\leq_{\mathrm{pr}} \subseteq \leq$,
 - (b) both (\mathbb{Q},\leq) and (\mathbb{Q},\leq_{pr}) are strategically $(<\lambda)$ –complete,
 - (c) for every $p \in \mathbb{Q}$ and a (\mathbb{Q}, \leq) -name $\underline{\tau}$ for an ordinal below κ , there are a set A of size less than μ and a condition $q \in \mathbb{Q}$ such that $p \leq_{\text{pr}} q$ and q forces (in (\mathbb{Q}, \leq)) that " $\underline{\tau} \in A$ ".
- If (Q, ≤, ≤_{pr}) is a forcing notion with λ–complete (κ, μ)–purity for every κ, then we say that it has λ–complete (*, μ)–purity.

Let $\mathbb{Q} = (\mathbb{Q}, \leq, \leq_{\text{pr}})$ be a forcing notion with λ -complete $(*, \lambda^+)$ -purity, $\mathbf{p} = (\bar{P}, S, D)$ be a $\mathcal{D}\ell$ -parameter on λ, \mathcal{U} be a normal filter on λ and $\bar{\mu} = \langle \mu_{\alpha} : \alpha < \lambda \rangle$ be a sequence of cardinals below λ .

A game with purity

For $p \in \mathbb{Q}$ we define a game $\partial_{\mathcal{U},\mathbf{p},\bar{\mu}}^{\mathrm{pr}}(p,\mathbb{Q})$ between Generic and Antigeneric. A play of $\partial_{\mathcal{U},\mathbf{p},\bar{\mu}}^{\mathrm{pr}}(p,\mathbb{Q})$ lasts λ steps and during the play a sequence $\left\langle \ell_{\alpha}, \langle p_{t}^{\alpha}, q_{t}^{\alpha} : t \in \mu_{\alpha} \rangle : \alpha < \lambda \right\rangle$ is constructed. At a stage $\alpha < \lambda$ of the game: $(\aleph)_{\alpha}^{\mathrm{pr}}$ first Antigeneric pics $\ell_{\alpha} \in \{0, 1\}$. $(\beth)_{\alpha}^{\mathrm{pr}}$ After this, Generic chooses a system $\langle p_{t}^{\alpha} : t \in \mu_{\alpha} \rangle$ of pairwise incompatible conditions from \mathbb{Q} , and

 $(\beth)^{pr}_{\alpha}$ Antigeneric answers with a system of conditions $q_t^{\alpha} \in \mathbb{Q}$ (for $t \in \mu_{\alpha}$) such that for each $t \in \mu_{\alpha}$:

•
$$p_t^{\alpha} \leq q_t^{\alpha}$$
, and

• if
$$\ell_{\alpha} = 1$$
, then $p_t^{\alpha} \leq_{\mathrm{pr}} q_t^{\alpha}$.

At the end, Generic wins the play

$$\left\langle \ell_{\alpha}, \left\langle \boldsymbol{p}_{t}^{\alpha}, \boldsymbol{q}_{t}^{\alpha} : t \in \mu_{\alpha} \right\rangle : \alpha < \lambda \right\rangle$$

if and only if either $\{\alpha < \lambda : \ell_{\alpha} = 1\} \notin \mathcal{U}$, or

 $(\circledast)_{pr}^{p}$ there is a condition $p^{*} \in \mathbb{Q}$ stronger than p and such that

$$\boldsymbol{\rho}^* \Vdash_{\mathbb{Q}} `` \{ \alpha < \lambda : (\exists t \in \mu_{\alpha}) (\boldsymbol{q}_t^{\alpha} \in \Gamma_{\mathbb{Q}}) \} \in \boldsymbol{D}[\mathbb{Q}] ".$$

We say that the forcing notion \mathbb{Q} (with λ -complete $(*, \lambda^+)$ -purity) is *purely* B^* -bounding over $\mathcal{U}, \mathbf{p}, \bar{\mu}$ if for any $\boldsymbol{p} \in \mathbb{Q}$, Generic has a winning strategy in the game $\Im_{\mathcal{U}, \mathbf{p}, \bar{\mu}}^{\mathrm{pr}}(\boldsymbol{p}, \mathbb{Q})$.

Observation 19

• For
$$p, q \in \mathbb{Q}_E^{1,E}$$
 let $p \leq_{\text{pr}} q$ mean that $p \leq q$ and $\operatorname{root}(p) = \operatorname{root}(q)$. Then $(\mathbb{Q}_E^{1,\overline{E}}, \leq, \leq_{\text{pr}})$ is a forcing notion with λ -complete $(*, \lambda^+)$ -purity.

Note **no** demands on *E* being orthogonal to *D*!

We say that the forcing notion \mathbb{Q} (with λ -complete $(*, \lambda^+)$ -purity) is *purely* B^* -bounding over $\mathcal{U}, \mathbf{p}, \bar{\mu}$ if for any $\boldsymbol{p} \in \mathbb{Q}$, Generic has a winning strategy in the game $\Im_{\mathcal{U}, \mathbf{p}, \bar{\mu}}^{\mathrm{pr}}(\boldsymbol{p}, \mathbb{Q})$.

Observation 19

• For
$$p, q \in \mathbb{Q}_E^{1,E}$$
 let $p \leq_{pr} q$ mean that $p \leq q$ and $root(p) = root(q)$. Then $(\mathbb{Q}_E^{1,\overline{E}}, \leq, \leq_{pr})$ is a forcing notion with λ -complete $(*, \lambda^+)$ -purity.

Note **no** demands on *E* being orthogonal to *D*!

Theorem 20 ([RoSh 888, Thm 2.7])

Assume that

- λ is strongly inaccessible, μ
 = ⟨μα : α < λ⟩ is a sequence of cardinals below λ, p = (P
 , S, D) is a Dℓ-parameter on λ, and
- $\widehat{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \widehat{\mathbb{Q}}_{\alpha} : \alpha < \gamma \rangle \text{ is a } \lambda \text{-support iteration,}$
- **3** \mathcal{U}_{α} is a \mathbb{P}_{α} -name for a normal filter on λ (for $\alpha < \gamma$),
- $\begin{array}{l} \bullet \quad \textbf{A}_{\alpha,\beta} \subseteq \lambda \text{ is such that } \Vdash_{\mathbb{P}_{\alpha}} \textbf{A}_{\alpha,\beta} \in \mathcal{U}_{\alpha} \text{ and } \Vdash_{\mathbb{P}_{\beta}} \lambda \setminus \textbf{A}_{\alpha,\beta} \in \mathcal{U}_{\beta} \\ \text{(for } \alpha < \beta < \gamma \text{), and} \end{array}$
- **5** for every $\alpha < \gamma$,

 $\Vdash_{\mathbb{P}_{\alpha}} "\mathbb{Q}_{\alpha} \text{ is purely } B^{*}\text{-bounding over } \mathcal{U}_{\alpha}, \mathbf{p}[\mathbb{P}_{\alpha}], \bar{\mu} ".$

Then $\mathbb{P}_{\gamma} = \lim(\overline{\mathbb{Q}})$ is λ -proper.

Thank you for your attention today.

I hope you will come to the third part of this series. We will talk about two ways to "cover" forcing $\mathbb{Q}^{2,\overline{E}}$ and others — with and without diamonds.

[RoSh 860] Andrzej Rosłanowski and Saharon Shelah. Reasonably complete forcing notions. *Quaderni di Matematica*, **17**:195–239, 2006. arxiv:math.LO/0508272.

[RoSh 888] Andrzej Rosłanowski and Saharon Shelah. Lords of the iteration. In *Set Theory and Its Applications*, volume 533 of *Contemporary Mathematics (CONM)*, pages 287–330. Amer. Math. Soc., 2011. arxiv:math.LO/0611131.

[RoSh 890] Andrzej Rosłanowski and Saharon Shelah. Reasonable ultrafilters, again. *Notre Dame Journal of Formal Logic*, **52**:113–147, 2011. arxiv:math.LO/0605067.

